
Using the GEOquery package

Sean Davis‡∗

April 21, 2009

‡Genetics Branch
National Cancer Institute

National Institutes of Health

Contents

1 Overview of GEO 2
1.1 Platforms . 2
1.2 Samples . 2
1.3 Series . 2
1.4 Datasets . 2

2 Getting Started using GEOquery 3

3 GEOquery Data Structures 3
3.1 The GDS, GSM, and GPL classes . 4
3.2 The GSE class . 8

4 Converting to BioConductor ExpressionSets and limma MALists 12
4.1 Getting GSE Series Matrix files as an ExpressionSet 12
4.2 Converting GDS to an ExpressionSet . 13
4.3 Converting GDS to an MAList . 16
4.4 Converting GSE to an ExpressionSet . 19

5 Accessing Raw Data from GEO 22

6 Conclusion 22

7 sessionInfo 22

∗sdavis2@mail.nih.gov

1

1 Overview of GEO

The NCBI Gene Expression Omnibus (GEO) serves as a public repository for a wide range of
high-throughput experimental data. These data include single and dual channel microarray-
based experiments measuring mRNA, genomic DNA, and protein abundance, as well as
non-array techniques such as serial analysis of gene expression (SAGE), mass spectrometry
proteomic data, and high-throughput sequencing data.

At the most basic level of organization of GEO, there are four basic entity types. The
first three (Sample, Platform, and Series) are supplied by users; the fourth, the dataset, is
compiled and curated by GEO staff from the user-submitted data.1

1.1 Platforms

A Platform record describes the list of elements on the array (e.g., cDNAs, oligonucleotide
probesets, ORFs, antibodies) or the list of elements that may be detected and quantified
in that experiment (e.g., SAGE tags, peptides). Each Platform record is assigned a unique
and stable GEO accession number (GPLxxx). A Platform may reference many Samples that
have been submitted by multiple submitters.

1.2 Samples

A Sample record describes the conditions under which an individual Sample was handled, the
manipulations it underwent, and the abundance measurement of each element derived from
it. Each Sample record is assigned a unique and stable GEO accession number (GSMxxx).
A Sample entity must reference only one Platform and may be included in multiple Series.

1.3 Series

A Series record defines a set of related Samples considered to be part of a group, how the
Samples are related, and if and how they are ordered. A Series provides a focal point and
description of the experiment as a whole. Series records may also contain tables describing
extracted data, summary conclusions, or analyses. Each Series record is assigned a unique
and stable GEO accession number (GSExxx). Series records are available in a couple of
formats which are handled by GEOquery independently. The smaller and new GSEMatrix
files are quite fast to parse; a simple flag is used by GEOquery to choose to use GSEMatrix
files (see below).

1.4 Datasets

GEO DataSets (GDSxxx) are curated sets of GEO Sample data. A GDS record represents
a collection of biologically and statistically comparable GEO Samples and forms the basis

1See http://www.ncbi.nih.gov/geo for more information

2

http://www.ncbi.nih.gov/geo

of GEO’s suite of data display and analysis tools. Samples within a GDS refer to the same
Platform, that is, they share a common set of probe elements. Value measurements for
each Sample within a GDS are assumed to be calculated in an equivalent manner, that is,
considerations such as background processing and normalization are consistent across the
dataset. Information reflecting experimental design is provided through GDS subsets.

2 Getting Started using GEOquery

Getting data from GEO is really quite easy. There is only one command that is needed,
getGEO. This one function interprets its input to determine how to get the data from GEO
and then parse the data into useful R data structures. Usage is quite simple:

> library(GEOquery)

This loads the GEOquery library.

> gds <- getGEO("GDS10")

File stored at:

/tmp/RtmpefLhnE/GDS10.soft

Now, gds contains the R data structure (of class GDS) that represents the GDS1 entry
from GEO. You’ll note that the filename used to store the download was output to the screen
(but not saved anywhere) for later use to a call to getGEO(filename=. . .).

We can do the same with any other GEO accession, such as GSM3, a GEO sample.

> gsm <- getGEO("GSM3")

File stored at:

/tmp/RtmpefLhnE/GSM3.soft

3 GEOquery Data Structures

The GEOquery data structures really come in two forms. The first, comprising GDS , GPL,
and GSM all behave similarly and accessors have similar effects on each. The fourth GEO-
query data structure, GSE is a composite data type made up of a combination of GSM and
GPL objects. I will explain the first three together first.

3

3.1 The GDS, GSM, and GPL classes

Each of these classes is comprised of a metadata header (taken nearly verbatim from the
SOFT format header) and a GEODataTable. The GEODataTable has two simple parts, a
Columns part which describes the column headers on the Table part. There is also a show
method for each class. For example, using the gsm from above:

> Meta(gsm)

$channel_count

[1] "1"

$contact_address

[1] "6 Center Drive"

$contact_city

[1] "Bethesda"

$contact_country

[1] "USA"

$contact_department

[1] "LCDB"

$contact_email

[1] "oliver@helix.nih.gov"

$contact_fax

[1] "301-496-5239"

$contact_institute

[1] "NIDDK, NIH"

$contact_name

[1] "Brian,,Oliver"

$contact_phone

[1] "301-496-5495"

$contact_state

[1] "MD"

$contact_web_link

[1] "http://www.niddk.nih.gov/intram/people/boliver.htm"

4

$`contact_zip/postal_code`
[1] "20892"

$data_row_count

[1] "3456"

$description

[1] "Testis dissected from adult (12-24 hours post-eclosion) Drosophila melanogaster of the genotype y w[67c1]."

[2] "Keywords = gonad, male, sex"

$geo_accession

[1] "GSM3"

$last_update_date

[1] "May 27 2005"

$molecule_ch1

[1] "total RNA"

$organism_ch1

[1] "Drosophila melanogaster"

$platform_id

[1] "GPL5"

$series_id

[1] "GSE462"

$source_name_ch1

[1] "y w[67c1]/Y testis"

$status

[1] "Public on Oct 18 2000"

$submission_date

[1] "Oct 18 2000"

$supplementary_file

[1] "NONE"

$title

5

[1] "testis a"

$type

[1] "RNA"

> Table(gsm)[1:5,]

ID_REF SIGNAL_RAW BKD_FORM NORM_FORM BKD_RAW NORM_VALUE CONST

1 1 138392.65 no no 101113.7775 395070.1312 39542

2 2 100973.49 no no 101113.7775 395070.1312 39542

3 3 118994.03 no no 101113.7775 395070.1312 39542

4 4 108126.05 yes no 101113.7775 395070.1312 39542

5 5 293362.11 no no 101113.7775 395070.1312 39542

VALUE

1 76820.87249

2 39401.7125

3 57422.25249

4 46554.2725

5 231790.3324

> Columns(gsm)

Column Description

1 ID_REF

2 SIGNAL_RAW raw signal

3 BKD_FORM

4 NORM_FORM

5 BKD_RAW raw background as taken in four quarters of microarray

6 NORM_VALUE normalization value

7 CONST constant value

8 VALUE

The GPL behaves exactly as the GSM class. However, the GDS has a bit more informa-
tion associated with the Columns method:

> Columns(gds)

sample tissue strain disease.state

1 GSM582 spleen NOD diabetic

2 GSM589 spleen NOD diabetic

3 GSM583 spleen Idd3 diabetic-resistant

4 GSM590 spleen Idd3 diabetic-resistant

5 GSM584 spleen Idd5 diabetic-resistant

6 GSM591 spleen Idd5 diabetic-resistant

6

7 GSM585 spleen Idd3+Idd5 diabetic-resistant

8 GSM592 spleen Idd3+Idd5 diabetic-resistant

9 GSM586 spleen Idd9 diabetic-resistant

10 GSM593 spleen Idd9 diabetic-resistant

11 GSM587 spleen B10.H2g7 nondiabetic

12 GSM594 spleen B10.H2g7 nondiabetic

13 GSM588 spleen B10.H2g7 Idd3 nondiabetic

14 GSM595 spleen B10.H2g7 Idd3 nondiabetic

15 GSM596 thymus NOD diabetic

16 GSM603 thymus NOD diabetic

17 GSM597 thymus Idd3 diabetic-resistant

18 GSM604 thymus Idd3 diabetic-resistant

19 GSM598 thymus Idd5 diabetic-resistant

20 GSM605 thymus Idd5 diabetic-resistant

21 GSM599 thymus Idd3+Idd5 diabetic-resistant

22 GSM606 thymus Idd3+Idd5 diabetic-resistant

23 GSM600 thymus Idd9 diabetic-resistant

24 GSM607 thymus Idd9 diabetic-resistant

25 GSM601 thymus B10.H2g7 nondiabetic

26 GSM608 thymus B10.H2g7 nondiabetic

27 GSM602 thymus B10.H2g7 Idd3 nondiabetic

28 GSM609 thymus B10.H2g7 Idd3 nondiabetic

description

1 Value for GSM582: NOD_S1; src: Spleen

2 Value for GSM589: NOD_S2; src: Spleen

3 Value for GSM583: Idd3_S1; src: Spleen

4 Value for GSM590: Idd3_S2; src: Spleen

5 Value for GSM584: Idd5_S1; src: Spleen

6 Value for GSM591: Idd5_S2; src: Spleen

7 Value for GSM585: Idd3+5_S1; src: Spleen

8 Value for GSM592: Idd3+5_S2; src: Spleen

9 Value for GSM586: Idd9_S1; src: Spleen

10 Value for GSM593: Idd9_S2; src: Spleen

11 Value for GSM587: B10.H2g7_S1; src: Spleen

12 Value for GSM594: B10.H2g7_S2; src: Spleen

13 Value for GSM588: B10.H2g7 Idd3_S1; src: Spleen

14 Value for GSM595: B10.H2g7 Idd3_S2; src: Spleen

15 Value for GSM596: NOD_T1; src: Thymus

16 Value for GSM603: NOD_T2; src: Thymus

17 Value for GSM597: Idd3_T1; src: Thymus

18 Value for GSM604: Idd3_T2; src: Thymus

19 Value for GSM598: Idd5_T1; src: Thymus

7

20 Value for GSM605: Idd5_T2; src: Thymus

21 Value for GSM599: Idd3+5_T1; src: Thymus

22 Value for GSM606: Idd3+5_T2; src: Thymus

23 Value for GSM600: Idd9_T1; src: Thymus

24 Value for GSM607: Idd9_T2; src: Thymus

25 Value for GSM601: B10.H2g7_T1; src: Thymus

26 Value for GSM608: B10.H2g7_T2; src: Thymus

27 Value for GSM602: B10.H2g7 Idd3_T1; src: Thymus

28 Value for GSM609: B10.H2g7 Idd3_T2; src: Thymus

3.2 The GSE class

The GSE is the most confusing of the GEO entities. A GSE entry can represent an arbitrary
number of samples run on an arbitrary number of platforms. The GSE has a metadata
section, just like the other classes. However, it doesn’t have a GEODataTable. Instead, it
contains two lists, accessible using GPLList and GSMList, that are each lists of GPL and
GSM objects. To show an example:

> gse <- getGEO("GSE462", GSEMatrix = FALSE)

File stored at:

/tmp/RtmpefLhnE/GSE462.soft

Parsing....

^PLATFORM = GPL5

^SAMPLE = GSM3

^SAMPLE = GSM4

^SAMPLE = GSM5

^SAMPLE = GSM6

^SAMPLE = GSM7

^SAMPLE = GSM8

^SAMPLE = GSM9

> Meta(gse)

$contact_address

[1] "6 Center Drive"

$contact_city

[1] "Bethesda"

$contact_country

[1] "USA"

$contact_department

8

[1] "LCDB"

$contact_email

[1] "oliver@helix.nih.gov"

$contact_fax

[1] "301-496-5239"

$contact_institute

[1] "NIDDK, NIH"

$contact_name

[1] "Brian,,Oliver"

$contact_phone

[1] "301-496-5495"

$contact_state

[1] "MD"

$contact_web_link

[1] "http://www.niddk.nih.gov/intram/people/boliver.htm"

$`contact_zip/postal_code`
[1] "20892"

$contributor

[1] "Justen,,Andrews" "Gerard,G,Bouffard" "Chris,,Cheadle"

[4] "Jining,,L~Aij" "Kevin,G,Becker" "Brian,,Oliver"

$geo_accession

[1] "GSE462"

$last_update_date

[1] "Oct 28 2005"

$platform_id

[1] "GPL5"

$pubmed_id

[1] "11116097"

9

$sample_id

[1] "GSM10" "GSM3" "GSM4" "GSM5" "GSM6" "GSM7" "GSM8" "GSM9"

$status

[1] "Public on Jul 16 2003"

$submission_date

[1] "Jun 25 2003"

$summary

[1] "Identification and annotation of all the genes in the sequenced Drosophila genome is a work in progress. Wild-type testis function requires many genes and is thus of potentially high value for the identification of transcription units. We therefore undertook a survey of the repertoire of genes expressed in the Drosophila testis by computational and microarray analysis. We generated 3141 high-quality testis expressed sequence tags (ESTs). Testis ESTs computationally collapsed into 1560 cDNA set used for further analysis. Of those, 11% correspond to named genes, and 33% provide biological evidence for a predicted gene. A surprising 47% fail to align with existing ESTs and 16% with predicted genes in the current genome release. EST frequency and microarray expression profiles indicate that the testis mRNA population is highly complex and shows an extended range of transcript abundance. Furthermore, >80% of the genes expressed in the testis showed onefold overexpression relative to ovaries, or gonadectomized flies. Additionally, >3% showed more than threefold overexpression at p <0.05. Surprisingly, 22% of the genes most highly overexpressed in testis match Drosophila genomic sequence, but not predicted genes. These data strongly support the idea that sequencing additional cDNA libraries from defined tissues, such as testis, will be important tools for refined annotation of the Drosophila genome. Additionally, these data suggest that the number of genes in Drosophila will significantly exceed the conservative estimate of 13,601."

$title

[1] "Analysis of transcription in the Drosophila melanogaster testis"

$type

[1] "other"

> names(GSMList(gse))

[1] "GSM10" "GSM3" "GSM4" "GSM5" "GSM6" "GSM7" "GSM8" "GSM9"

> GSMList(gse)[[1]]

An object of class "GSM"

channel_count

[1] "1"

contact_address

[1] "6 Center Drive"

contact_city

[1] "Bethesda"

contact_country

[1] "USA"

contact_department

[1] "LCDB"

contact_email

[1] "oliver@helix.nih.gov"

contact_fax

[1] "301-496-5239"

contact_institute

[1] "NIDDK, NIH"

contact_name

[1] "Brian,,Oliver"

10

contact_phone

[1] "301-496-5495"

contact_state

[1] "MD"

contact_web_link

[1] "http://www.niddk.nih.gov/intram/people/boliver.htm"

contact_zip/postal_code

[1] "20892"

data_row_count

[1] "3456"

description

[1] "Whole adult male minus (12-24 hours post-eclosion) Drosophila melanogaster of the genotype y w[67c1]."

geo_accession

[1] "GSM10"

last_update_date

[1] "Mar 09 2006"

molecule_ch1

[1] "total RNA"

organism_ch1

[1] "Drosophila melanogaster"

platform_id

[1] "GPL5"

series_id

[1] "GSE462"

source_name_ch1

[1] "y w[67c1] female"

status

[1] "Public on Oct 18 2000"

submission_date

[1] "Oct 18 2000"

title

[1] "female b"

type

[1] "RNA"

An object of class "GEODataTable"

****** Column Descriptions ******

Column Description

1 ID_REF

2 SIGNAL_RAW raw signal

3 BKD_FORM

4 NORM_FORM

5 BKD_RAW raw background

11

6 NORM_VALUE normalization value

7 CONST constant value

8 VALUE

****** Data Table ******

ID_REF SIGNAL_RAW BKD_FORM NORM_FORM BKD_RAW NORM_VALUE CONST VALUE

1 1 4486.49 0 0 3379.579 23337.54 39542 55845.45

2 2 3482.51 0 0 3379.579 23337.54 39542 41058.05

3 3 3812.39 0 0 3379.579 23337.54 39542 45916.78

4 4 3257.56 1 0 3379.579 23337.54 39542 37744.81

5 5 5436.91 0 0 3379.579 23337.54 39542 69843.97

3450 more rows ...

> names(GPLList(gse))

[1] "GPL5"

See below for an additional, preferred method of obtaining GSE information.

4 Converting to BioConductor ExpressionSets and limma

MALists

GEO datasets are (unlike some of the other GEO entities), quite similar to the limma data
structure MAList and to the Biobase data structure ExpressionSet . Therefore, there are two
functions, GDS2MA and GDS2eSet that accomplish that task.

4.1 Getting GSE Series Matrix files as an ExpressionSet

GEO Series are collections of related experiments. In addition to being available as SOFT
format files, which are quite large, NCBI GEO has prepared a simpler format file based on
tab-delimited text. The getGEO function can handle this format and will parse very large
GSEs quite quickly. The data structure returned from this parsing is a list of ExpressionSets.
As an example, we download and parse GSE2553.

> gse2553 <- getGEO("GSE2553", GSEMatrix = TRUE)

Found 1 file(s)

GSE2553_series_matrix.txt.gz

File stored at:

/tmp/RtmpefLhnE/GPL1977.soft

> show(gse2553)

12

$GSE2553_series_matrix.txt.gz

ExpressionSet (storageMode: lockedEnvironment)

assayData: 12600 features, 181 samples

element names: exprs

phenoData

sampleNames: GSM48681, GSM48682, ..., GSM48861 (181 total)

varLabels and varMetadata description:

title: NA

geo_accession: NA

...: ...

data_row_count: NA

(27 total)

featureData

featureNames: 1, 2, ..., 12600 (12600 total)

fvarLabels and fvarMetadata description:

ID: NA

PenAt: NA

...: ...

Chimeric_Cluster_IDs: NA

(13 total)

additional fvarMetadata: Column, Description

experimentData: use 'experimentData(object)'
Annotation: GPL1977

> show(pData(phenoData(gse2553[[1]]))[1:5, c(1, 6, 8)])

title type

GSM48681 Patient sample ST18, Dermatofibrosarcoma RNA

GSM48682 Patient sample ST410, Ewing Sarcoma RNA

GSM48683 Patient sample ST130, Sarcoma, NOS RNA

GSM48684 Patient sample ST293, Malignant Peripheral Nerve Sheath Tumor RNA

GSM48685 Patient sample ST367, Liposarcoma RNA

source_name_ch1

GSM48681 Dermatofibrosarcoma

GSM48682 Ewing Sarcoma

GSM48683 Sarcoma, NOS

GSM48684 Malignant Peripheral Nerve Sheath Tumor

GSM48685 Liposarcoma

4.2 Converting GDS to an ExpressionSet

Taking our gds object from above, we can simply do:

> eset <- GDS2eSet(gds, do.log2 = TRUE)

13

File stored at:

/tmp/RtmpefLhnE/GPL24.annot

Now, eset is an ExpressionSet that contains the same information as in the GEO dataset,
including the sample information, which we can see here:

> eset

ExpressionSet (storageMode: lockedEnvironment)

assayData: 39114 features, 28 samples

element names: exprs

phenoData

sampleNames: GSM582, GSM589, ..., GSM609 (28 total)

varLabels and varMetadata description:

sample: NA

tissue: NA

...: ...

description: NA

(5 total)

featureData

featureNames: 1, 2, ..., 39114 (39114 total)

fvarLabels and fvarMetadata description:

ID: ID from Platform data table

Gene.title: Entrez Gene name

...: ...

GO.Component.1: Gene Ontology Component identifier

(21 total)

additional fvarMetadata: Column

experimentData: use 'experimentData(object)'
pubMedIds: 11827943

Annotation:

> pData(eset)

sample tissue strain disease.state

GSM582 GSM582 spleen NOD diabetic

GSM589 GSM589 spleen NOD diabetic

GSM583 GSM583 spleen Idd3 diabetic-resistant

GSM590 GSM590 spleen Idd3 diabetic-resistant

GSM584 GSM584 spleen Idd5 diabetic-resistant

GSM591 GSM591 spleen Idd5 diabetic-resistant

GSM585 GSM585 spleen Idd3+Idd5 diabetic-resistant

GSM592 GSM592 spleen Idd3+Idd5 diabetic-resistant

GSM586 GSM586 spleen Idd9 diabetic-resistant

14

GSM593 GSM593 spleen Idd9 diabetic-resistant

GSM587 GSM587 spleen B10.H2g7 nondiabetic

GSM594 GSM594 spleen B10.H2g7 nondiabetic

GSM588 GSM588 spleen B10.H2g7 Idd3 nondiabetic

GSM595 GSM595 spleen B10.H2g7 Idd3 nondiabetic

GSM596 GSM596 thymus NOD diabetic

GSM603 GSM603 thymus NOD diabetic

GSM597 GSM597 thymus Idd3 diabetic-resistant

GSM604 GSM604 thymus Idd3 diabetic-resistant

GSM598 GSM598 thymus Idd5 diabetic-resistant

GSM605 GSM605 thymus Idd5 diabetic-resistant

GSM599 GSM599 thymus Idd3+Idd5 diabetic-resistant

GSM606 GSM606 thymus Idd3+Idd5 diabetic-resistant

GSM600 GSM600 thymus Idd9 diabetic-resistant

GSM607 GSM607 thymus Idd9 diabetic-resistant

GSM601 GSM601 thymus B10.H2g7 nondiabetic

GSM608 GSM608 thymus B10.H2g7 nondiabetic

GSM602 GSM602 thymus B10.H2g7 Idd3 nondiabetic

GSM609 GSM609 thymus B10.H2g7 Idd3 nondiabetic

description

GSM582 Value for GSM582: NOD_S1; src: Spleen

GSM589 Value for GSM589: NOD_S2; src: Spleen

GSM583 Value for GSM583: Idd3_S1; src: Spleen

GSM590 Value for GSM590: Idd3_S2; src: Spleen

GSM584 Value for GSM584: Idd5_S1; src: Spleen

GSM591 Value for GSM591: Idd5_S2; src: Spleen

GSM585 Value for GSM585: Idd3+5_S1; src: Spleen

GSM592 Value for GSM592: Idd3+5_S2; src: Spleen

GSM586 Value for GSM586: Idd9_S1; src: Spleen

GSM593 Value for GSM593: Idd9_S2; src: Spleen

GSM587 Value for GSM587: B10.H2g7_S1; src: Spleen

GSM594 Value for GSM594: B10.H2g7_S2; src: Spleen

GSM588 Value for GSM588: B10.H2g7 Idd3_S1; src: Spleen

GSM595 Value for GSM595: B10.H2g7 Idd3_S2; src: Spleen

GSM596 Value for GSM596: NOD_T1; src: Thymus

GSM603 Value for GSM603: NOD_T2; src: Thymus

GSM597 Value for GSM597: Idd3_T1; src: Thymus

GSM604 Value for GSM604: Idd3_T2; src: Thymus

GSM598 Value for GSM598: Idd5_T1; src: Thymus

GSM605 Value for GSM605: Idd5_T2; src: Thymus

GSM599 Value for GSM599: Idd3+5_T1; src: Thymus

GSM606 Value for GSM606: Idd3+5_T2; src: Thymus

15

GSM600 Value for GSM600: Idd9_T1; src: Thymus

GSM607 Value for GSM607: Idd9_T2; src: Thymus

GSM601 Value for GSM601: B10.H2g7_T1; src: Thymus

GSM608 Value for GSM608: B10.H2g7_T2; src: Thymus

GSM602 Value for GSM602: B10.H2g7 Idd3_T1; src: Thymus

GSM609 Value for GSM609: B10.H2g7 Idd3_T2; src: Thymus

4.3 Converting GDS to an MAList

No annotation information (called platform information by GEO) was retrieved from because
ExpressionSet does not contain slots for gene information, typically. However, it is easy to
obtain this information. First, we need to know what platform this GDS used. Then, another
call to getGEO will get us what we need.

> Meta(gds)$platform

[1] "GPL24"

> gpl <- getGEO("GPL5")

File stored at:

/tmp/RtmpefLhnE/GPL5.soft

So, gpl now contains the information for GPL5 from GEO. Unlike ExpressionSet , the
limma MAList does store gene annotation information, so we can use our newly created gpl

of class GPL in a call to GDS2MA like so:

> MA <- GDS2MA(gds, GPL = gpl)

> MA

An object of class "MAList"

$M

GSM582 GSM589 GSM583 GSM590 GSM584 GSM591 GSM585 GSM592 GSM586 GSM593

[1,] 101 54 111 55 87 30 99 43 105 56

[2,] 26 23 30 27 19 22 32 19 24 25

[3,] NA NA NA NA NA NA NA NA NA NA

[4,] 233 162 252 178 214 144 238 147 250 166

[5,] NA NA NA NA NA NA NA NA NA NA

GSM587 GSM594 GSM588 GSM595 GSM596 GSM603 GSM597 GSM604 GSM598 GSM605

[1,] 43 14 112 43 97 36 117 40 125 45

[2,] 14 49 32 29 31 22 26 26 35 26

[3,] NA 7 NA 4 10 22 NA 15 NA 23

[4,] 86 22 236 139 216 112 241 130 270 144

[5,] NA NA NA 3 NA NA NA NA NA NA

16

GSM599 GSM606 GSM600 GSM607 GSM601 GSM608 GSM602 GSM609

[1,] 99 1 109 38 87 18 72 16

[2,] 18 13 25 32 28 40 14 41

[3,] NA 29 9 25 11 40 NA 22

[4,] 239 148 211 139 208 16 174 15

[5,] NA NA NA NA NA NA NA NA

39109 more rows ...

$A

NULL

$targets

sample tissue strain disease.state

1 GSM582 spleen NOD diabetic

2 GSM589 spleen NOD diabetic

3 GSM583 spleen Idd3 diabetic-resistant

4 GSM590 spleen Idd3 diabetic-resistant

5 GSM584 spleen Idd5 diabetic-resistant

description

1 Value for GSM582: NOD_S1; src: Spleen

2 Value for GSM589: NOD_S2; src: Spleen

3 Value for GSM583: Idd3_S1; src: Spleen

4 Value for GSM590: Idd3_S2; src: Spleen

5 Value for GSM584: Idd5_S1; src: Spleen

23 more rows ...

$genes

ID GB_ACC BSCC_ID CLONE_ID SUB.ARRAY DUPLICATE ROW COLUMN PCR_QC SPOT_ID

1 1 AI944549 bs03g07 FBgn0033989 1 a 1 1 passed

2 2 AI944695 bs04c11 FBgn0032821 1 a 1 2 passed

3 3 AI944741 bs04h01 FBgn0034374 1 a 1 3 passed

4 4 AI944801 bs05f04 FBgn0039421 1 a 1 4 failed

5 5 AI945043 bs08c11 FBgn0045370 1 a 1 5 passed

BEST_HIT

1 gi|4929571|gb|AAD34046.1|AF151809_1 (AF151809) CGI-51 protein [Homo sapiens]

2

3

4 gi|4505995|ref|NP_002697.1|PPPM1B| protein phosphatase 1B (formerly 2C), magnesium-dependent, betaisoform >gi|3378168|emb|CAA06704| (AJ005801) PP2C [Homosapiens]

5

E_VAL SPOT_QC

1 2e-08 44364

2 <NA> 16957

17

3 <NA> 17896

4 1e-25 16363

5 <NA> 83502

39109 more rows ...

$notes

$

NULL

$channel_count

[1] "1"

$description

[1] "Examination of spleen and thymus of type 1 diabetes nonobese diabetic (NOD) mouse, four NOD-derived diabetes-resistant congenic strains and two nondiabetic control strains."

$feature_count

[1] "39114"

$order

[1] "none"

$platform

[1] "GPL24"

$platform_organism

[1] "Mus musculus"

$platform_technology_type

[1] "in situ oligonucleotide"

$pubmed_id

[1] "11827943"

$reference_series

[1] "GSE11"

$sample_count

[1] "28"

$sample_organism

[1] "Mus musculus"

18

$sample_type

[1] "RNA"

$title

[1] "Type 1 diabetes gene expression profiling"

$type

[1] "gene expression array-based"

$update_date

[1] "Jul 15 2003"

$value_type

[1] "count"

Now, MA is of class MAList and contains not only the data, but the sample information
and gene information associated with GDS1.

4.4 Converting GSE to an ExpressionSet

First, make sure that using the method described above in the section “Getting GSE Series
Matrix files as an ExpressionSet” for using GSE Series Matrix files is not sufficient for the
task, as it is much faster and simpler. If it is not (i.e., other columns from each GSM are
needed), then this method will be needed.

Converting a GSE object to an ExpressionSet object currently takes a bit of R data
manipulation due to the varied data that can be stored in a GSE and the underlying GSM
and GPL objects. However, using a simple example will hopefully be illustrative of the
technique.

First, we need to make sure that all of the GSMs are from the same platform:

> gsmplatforms <- lapply(GSMList(gse), function(x) {

+ Meta(x)$platform

+ })

> gsmplatforms

$GSM10

[1] "GPL5"

$GSM3

[1] "GPL5"

$GSM4

[1] "GPL5"

19

$GSM5

[1] "GPL5"

$GSM6

[1] "GPL5"

$GSM7

[1] "GPL5"

$GSM8

[1] "GPL5"

$GSM9

[1] "GPL5"

Indeed, they all used GPL5 as their platform (which we could have determined by looking
at the GPLList for gse, which shows only one GPL for this particular GSE.). So, now we
would like to know what column represents the data that we would like to extract. Looking
at the first few rows of the Table of a single GSM will likely give us an idea (and by the
way, GEO uses a convention that the column that contains the single “measurement” for
each array is called the “VALUE” column, which we could use if we don’t know what other
column is most relevant).

> Table(GSMList(gse)[[1]])[1:5,]

ID_REF SIGNAL_RAW BKD_FORM NORM_FORM BKD_RAW NORM_VALUE CONST VALUE

1 1 4486.49 0 0 3379.579 23337.54 39542 55845.45

2 2 3482.51 0 0 3379.579 23337.54 39542 41058.05

3 3 3812.39 0 0 3379.579 23337.54 39542 45916.78

4 4 3257.56 1 0 3379.579 23337.54 39542 37744.81

5 5 5436.91 0 0 3379.579 23337.54 39542 69843.97

> Columns(GSMList(gse)[[1]])[1:5,]

Column Description

1 ID_REF

2 SIGNAL_RAW raw signal

3 BKD_FORM

4 NORM_FORM

5 BKD_RAW raw background

We will indeed use the “VALUE” column. We then want to make a matrix of these values
like so:

20

> probesets <- Table(GPLList(gse)[[1]])$ID

> data.matrix <- do.call("cbind", lapply(GSMList(gse), function(x) {

+ tab <- Table(x)

+ mymatch <- match(probesets, tab$ID_REF)

+ return(tab$VALUE[mymatch])

+ }))

> data.matrix <- apply(data.matrix, 2, function(x) {

+ as.numeric(as.character(x))

+ })

> data.matrix <- log2(data.matrix)

> data.matrix[1:5,]

GSM10 GSM3 GSM4 GSM5 GSM6 GSM7 GSM8 GSM9

[1,] 15.76915 16.22921 16.13000 15.65034 17.09214 15.45853 16.09474 15.23515

[2,] 15.32538 15.26597 NaN 15.20406 16.47596 14.85776 15.14885 14.89007

[3,] 15.48673 15.80932 14.16259 15.18048 16.21235 15.06094 15.38242 14.96986

[4,] 15.20399 15.50663 13.41582 15.05939 16.18593 14.79861 14.80460 15.01923

[5,] 16.09185 17.82246 18.38270 16.24570 16.60964 15.90011 16.00962 15.88859

Note that we do a “match” to make sure that the values and the platform information
are in the same order. Finally, to make the ExpressionSet object:

> require(Biobase)

> rownames(data.matrix) <- probesets

> colnames(data.matrix) <- names(GSMList(gse))

> pdata <- data.frame(samples = names(GSMList(gse)))

> rownames(pdata) <- names(GSMList(gse))

> pheno <- as(pdata, "AnnotatedDataFrame")

> eset2 <- new("ExpressionSet", exprs = data.matrix, phenoData = pheno)

> eset2

ExpressionSet (storageMode: lockedEnvironment)

assayData: 3455 features, 8 samples

element names: exprs

phenoData

sampleNames: GSM10, GSM3, ..., GSM9 (8 total)

varLabels and varMetadata description:

samples: NA

featureData

featureNames: 1, 2, ..., 3455 (3455 total)

fvarLabels and fvarMetadata description: none

experimentData: use 'experimentData(object)'
Annotation:

21

So, using a combination of lapply on the GSMList, one can extract as many columns
of interest as necessary to build the data structure of choice. Because the GSM data from
the GEO website are fully downloaded and included in the GSE object, one can extract
foreground and background as well as quality for two-channel arrays, for example. Getting
array annotation is also a bit more complicated, but by replacing “platform” in the lapply
call to get platform information for each array, one can get other information associated with
each array. Future work with this package will likely focus on better tools for manipulating
GSE data.

5 Accessing Raw Data from GEO

NCBI GEO accepts (but has not always required) raw data such as .CEL files, .CDF files,
images, etc. Sometimes, it is useful to get quick access to such data. A single function,
getGEOSuppFiles, can take as an argument a GEO accession and will download all the raw
data associate with that accession. By default, the function will create a directory in the
current working directory to store the raw data for the chosen GEO accession. Combining
a simple sapply statement or other loop structure with getGEOSuppFiles makes for a very
simple way to get gobs of raw data quickly and easily without needing to know the specifics
of GEO raw data URLs.

6 Conclusion

The GEOquery package provides a bridge to the vast array resources contained in the NCBI
GEO repositories. By maintaining the full richness of the GEO data rather than focusing on
getting only the “numbers”, it is possible to integrate GEO data into current Bioconductor
data structures and to perform analyses on that data quite quickly and easily. These tools
will hopefully open GEO data more fully to the array community at large.

7 sessionInfo

• R version 2.9.0 (2009-04-17), x86_64-unknown-linux-gnu

• Locale: LC_CTYPE=en_US;LC_NUMERIC=C;LC_TIME=en_US;LC_COLLATE=en_US;LC_MONETARY=C;LC_MESSAGES=en_US;LC_PAPER=en_US;LC_NAME=C;LC_ADDRESS=C;LC_TELEPHONE=C;LC_MEASUREMENT=en_US;LC_IDENTIFICATION=C

• Base packages: base, datasets, graphics, grDevices, methods, stats, tools, utils

• Other packages: Biobase 2.4.0, GEOquery 2.8.0, limma 2.18.0, RCurl 0.94-1

22

	Overview of GEO
	Platforms
	Samples
	Series
	Datasets

	Getting Started using GEOquery
	GEOquery Data Structures
	The GDS, GSM, and GPL classes
	The GSE class

	Converting to BioConductor ExpressionSets and limma MALists
	Getting GSE Series Matrix files as an ExpressionSet
	Converting GDS to an ExpressionSet
	Converting GDS to an MAList
	Converting GSE to an ExpressionSet

	Accessing Raw Data from GEO
	Conclusion
	sessionInfo

